f(true, x, y, z) → f(gt(x, plus(y, z)), x, s(y), z)
f(true, x, y, z) → f(gt(x, plus(y, z)), x, y, s(z))
plus(n, 0) → n
plus(n, s(m)) → s(plus(n, m))
gt(0, v) → false
gt(s(u), 0) → true
gt(s(u), s(v)) → gt(u, v)
↳ QTRS
↳ AAECC Innermost
f(true, x, y, z) → f(gt(x, plus(y, z)), x, s(y), z)
f(true, x, y, z) → f(gt(x, plus(y, z)), x, y, s(z))
plus(n, 0) → n
plus(n, s(m)) → s(plus(n, m))
gt(0, v) → false
gt(s(u), 0) → true
gt(s(u), s(v)) → gt(u, v)
plus(n, 0) → n
plus(n, s(m)) → s(plus(n, m))
gt(0, v) → false
gt(s(u), 0) → true
gt(s(u), s(v)) → gt(u, v)
f(true, x, y, z) → f(gt(x, plus(y, z)), x, s(y), z)
f(true, x, y, z) → f(gt(x, plus(y, z)), x, y, s(z))
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
f(true, x, y, z) → f(gt(x, plus(y, z)), x, s(y), z)
f(true, x, y, z) → f(gt(x, plus(y, z)), x, y, s(z))
plus(n, 0) → n
plus(n, s(m)) → s(plus(n, m))
gt(0, v) → false
gt(s(u), 0) → true
gt(s(u), s(v)) → gt(u, v)
f(true, x0, x1, x2)
plus(x0, 0)
plus(x0, s(x1))
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
F(true, x, y, z) → GT(x, plus(y, z))
F(true, x, y, z) → F(gt(x, plus(y, z)), x, s(y), z)
F(true, x, y, z) → F(gt(x, plus(y, z)), x, y, s(z))
GT(s(u), s(v)) → GT(u, v)
PLUS(n, s(m)) → PLUS(n, m)
F(true, x, y, z) → PLUS(y, z)
f(true, x, y, z) → f(gt(x, plus(y, z)), x, s(y), z)
f(true, x, y, z) → f(gt(x, plus(y, z)), x, y, s(z))
plus(n, 0) → n
plus(n, s(m)) → s(plus(n, m))
gt(0, v) → false
gt(s(u), 0) → true
gt(s(u), s(v)) → gt(u, v)
f(true, x0, x1, x2)
plus(x0, 0)
plus(x0, s(x1))
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
F(true, x, y, z) → GT(x, plus(y, z))
F(true, x, y, z) → F(gt(x, plus(y, z)), x, s(y), z)
F(true, x, y, z) → F(gt(x, plus(y, z)), x, y, s(z))
GT(s(u), s(v)) → GT(u, v)
PLUS(n, s(m)) → PLUS(n, m)
F(true, x, y, z) → PLUS(y, z)
f(true, x, y, z) → f(gt(x, plus(y, z)), x, s(y), z)
f(true, x, y, z) → f(gt(x, plus(y, z)), x, y, s(z))
plus(n, 0) → n
plus(n, s(m)) → s(plus(n, m))
gt(0, v) → false
gt(s(u), 0) → true
gt(s(u), s(v)) → gt(u, v)
f(true, x0, x1, x2)
plus(x0, 0)
plus(x0, s(x1))
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
GT(s(u), s(v)) → GT(u, v)
f(true, x, y, z) → f(gt(x, plus(y, z)), x, s(y), z)
f(true, x, y, z) → f(gt(x, plus(y, z)), x, y, s(z))
plus(n, 0) → n
plus(n, s(m)) → s(plus(n, m))
gt(0, v) → false
gt(s(u), 0) → true
gt(s(u), s(v)) → gt(u, v)
f(true, x0, x1, x2)
plus(x0, 0)
plus(x0, s(x1))
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDP
GT(s(u), s(v)) → GT(u, v)
f(true, x0, x1, x2)
plus(x0, 0)
plus(x0, s(x1))
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
f(true, x0, x1, x2)
plus(x0, 0)
plus(x0, s(x1))
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
GT(s(u), s(v)) → GT(u, v)
From the DPs we obtained the following set of size-change graphs:
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
PLUS(n, s(m)) → PLUS(n, m)
f(true, x, y, z) → f(gt(x, plus(y, z)), x, s(y), z)
f(true, x, y, z) → f(gt(x, plus(y, z)), x, y, s(z))
plus(n, 0) → n
plus(n, s(m)) → s(plus(n, m))
gt(0, v) → false
gt(s(u), 0) → true
gt(s(u), s(v)) → gt(u, v)
f(true, x0, x1, x2)
plus(x0, 0)
plus(x0, s(x1))
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
PLUS(n, s(m)) → PLUS(n, m)
f(true, x0, x1, x2)
plus(x0, 0)
plus(x0, s(x1))
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
f(true, x0, x1, x2)
plus(x0, 0)
plus(x0, s(x1))
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
PLUS(n, s(m)) → PLUS(n, m)
From the DPs we obtained the following set of size-change graphs:
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
F(true, x, y, z) → F(gt(x, plus(y, z)), x, s(y), z)
F(true, x, y, z) → F(gt(x, plus(y, z)), x, y, s(z))
f(true, x, y, z) → f(gt(x, plus(y, z)), x, s(y), z)
f(true, x, y, z) → f(gt(x, plus(y, z)), x, y, s(z))
plus(n, 0) → n
plus(n, s(m)) → s(plus(n, m))
gt(0, v) → false
gt(s(u), 0) → true
gt(s(u), s(v)) → gt(u, v)
f(true, x0, x1, x2)
plus(x0, 0)
plus(x0, s(x1))
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
F(true, x, y, z) → F(gt(x, plus(y, z)), x, s(y), z)
F(true, x, y, z) → F(gt(x, plus(y, z)), x, y, s(z))
plus(n, 0) → n
plus(n, s(m)) → s(plus(n, m))
gt(0, v) → false
gt(s(u), 0) → true
gt(s(u), s(v)) → gt(u, v)
f(true, x0, x1, x2)
plus(x0, 0)
plus(x0, s(x1))
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
f(true, x0, x1, x2)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ NonInfProof
F(true, x, y, z) → F(gt(x, plus(y, z)), x, s(y), z)
F(true, x, y, z) → F(gt(x, plus(y, z)), x, y, s(z))
plus(n, 0) → n
plus(n, s(m)) → s(plus(n, m))
gt(0, v) → false
gt(s(u), 0) → true
gt(s(u), s(v)) → gt(u, v)
plus(x0, 0)
plus(x0, s(x1))
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
(1) (F(gt(x0, plus(x1, x2)), x0, s(x1), x2)=F(true, x3, x4, x5) ⇒ F(true, x3, x4, x5)≥F(gt(x3, plus(x4, x5)), x3, s(x4), x5))
(2) (plus(x1, x2)=x24∧gt(x0, x24)=true ⇒ F(true, x0, s(x1), x2)≥F(gt(x0, plus(s(x1), x2)), x0, s(s(x1)), x2))
(3) (true=true∧plus(x1, x2)=0 ⇒ F(true, s(x26), s(x1), x2)≥F(gt(s(x26), plus(s(x1), x2)), s(x26), s(s(x1)), x2))
(4) (gt(x27, x28)=true∧plus(x1, x2)=s(x28)∧(∀x29,x30:gt(x27, x28)=true∧plus(x29, x30)=x28 ⇒ F(true, x27, s(x29), x30)≥F(gt(x27, plus(s(x29), x30)), x27, s(s(x29)), x30)) ⇒ F(true, s(x27), s(x1), x2)≥F(gt(s(x27), plus(s(x1), x2)), s(x27), s(s(x1)), x2))
(5) (plus(x1, x2)=0 ⇒ F(true, s(x26), s(x1), x2)≥F(gt(s(x26), plus(s(x1), x2)), s(x26), s(s(x1)), x2))
(6) (x34=s(x28)∧gt(x27, x28)=true∧(∀x29,x30:gt(x27, x28)=true∧plus(x29, x30)=x28 ⇒ F(true, x27, s(x29), x30)≥F(gt(x27, plus(s(x29), x30)), x27, s(s(x29)), x30)) ⇒ F(true, s(x27), s(x34), 0)≥F(gt(s(x27), plus(s(x34), 0)), s(x27), s(s(x34)), 0))
(7) (s(plus(x35, x36))=s(x28)∧gt(x27, x28)=true∧(∀x29,x30:gt(x27, x28)=true∧plus(x29, x30)=x28 ⇒ F(true, x27, s(x29), x30)≥F(gt(x27, plus(s(x29), x30)), x27, s(s(x29)), x30))∧(∀x37,x38,x39,x40:plus(x35, x36)=s(x37)∧gt(x38, x37)=true∧(∀x39,x40:gt(x38, x37)=true∧plus(x39, x40)=x37 ⇒ F(true, x38, s(x39), x40)≥F(gt(x38, plus(s(x39), x40)), x38, s(s(x39)), x40)) ⇒ F(true, s(x38), s(x35), x36)≥F(gt(s(x38), plus(s(x35), x36)), s(x38), s(s(x35)), x36)) ⇒ F(true, s(x27), s(x35), s(x36))≥F(gt(s(x27), plus(s(x35), s(x36))), s(x27), s(s(x35)), s(x36)))
(8) (x31=0 ⇒ F(true, s(x26), s(x31), 0)≥F(gt(s(x26), plus(s(x31), 0)), s(x26), s(s(x31)), 0))
(9) (F(true, s(x26), s(0), 0)≥F(gt(s(x26), plus(s(0), 0)), s(x26), s(s(0)), 0))
(10) (gt(x27, x28)=true ⇒ F(true, s(x27), s(s(x28)), 0)≥F(gt(s(x27), plus(s(s(x28)), 0)), s(x27), s(s(s(x28))), 0))
(11) (plus(x35, x36)=x28∧gt(x27, x28)=true∧(∀x29,x30:gt(x27, x28)=true∧plus(x29, x30)=x28 ⇒ F(true, x27, s(x29), x30)≥F(gt(x27, plus(s(x29), x30)), x27, s(s(x29)), x30))∧(∀x37,x38,x39,x40:plus(x35, x36)=s(x37)∧gt(x38, x37)=true∧(∀x39,x40:gt(x38, x37)=true∧plus(x39, x40)=x37 ⇒ F(true, x38, s(x39), x40)≥F(gt(x38, plus(s(x39), x40)), x38, s(s(x39)), x40)) ⇒ F(true, s(x38), s(x35), x36)≥F(gt(s(x38), plus(s(x35), x36)), s(x38), s(s(x35)), x36)) ⇒ F(true, s(x27), s(x35), s(x36))≥F(gt(s(x27), plus(s(x35), s(x36))), s(x27), s(s(x35)), s(x36)))
(12) (true=true ⇒ F(true, s(s(x42)), s(s(0)), 0)≥F(gt(s(s(x42)), plus(s(s(0)), 0)), s(s(x42)), s(s(s(0))), 0))
(13) (gt(x43, x44)=true∧(gt(x43, x44)=true ⇒ F(true, s(x43), s(s(x44)), 0)≥F(gt(s(x43), plus(s(s(x44)), 0)), s(x43), s(s(s(x44))), 0)) ⇒ F(true, s(s(x43)), s(s(s(x44))), 0)≥F(gt(s(s(x43)), plus(s(s(s(x44))), 0)), s(s(x43)), s(s(s(s(x44)))), 0))
(14) (F(true, s(s(x42)), s(s(0)), 0)≥F(gt(s(s(x42)), plus(s(s(0)), 0)), s(s(x42)), s(s(s(0))), 0))
(15) (F(true, s(x43), s(s(x44)), 0)≥F(gt(s(x43), plus(s(s(x44)), 0)), s(x43), s(s(s(x44))), 0) ⇒ F(true, s(s(x43)), s(s(s(x44))), 0)≥F(gt(s(s(x43)), plus(s(s(s(x44))), 0)), s(s(x43)), s(s(s(s(x44)))), 0))
(16) (F(true, x27, s(x35), x36)≥F(gt(x27, plus(s(x35), x36)), x27, s(s(x35)), x36)∧(∀x37,x38,x39,x40:plus(x35, x36)=s(x37)∧gt(x38, x37)=true∧(∀x39,x40:gt(x38, x37)=true∧plus(x39, x40)=x37 ⇒ F(true, x38, s(x39), x40)≥F(gt(x38, plus(s(x39), x40)), x38, s(s(x39)), x40)) ⇒ F(true, s(x38), s(x35), x36)≥F(gt(s(x38), plus(s(x35), x36)), s(x38), s(s(x35)), x36)) ⇒ F(true, s(x27), s(x35), s(x36))≥F(gt(s(x27), plus(s(x35), s(x36))), s(x27), s(s(x35)), s(x36)))
(17) (F(true, x27, s(x35), x36)≥F(gt(x27, plus(s(x35), x36)), x27, s(s(x35)), x36) ⇒ F(true, s(x27), s(x35), s(x36))≥F(gt(s(x27), plus(s(x35), s(x36))), s(x27), s(s(x35)), s(x36)))
(18) (F(gt(x6, plus(x7, x8)), x6, x7, s(x8))=F(true, x9, x10, x11) ⇒ F(true, x9, x10, x11)≥F(gt(x9, plus(x10, x11)), x9, s(x10), x11))
(19) (plus(x7, x8)=x45∧gt(x6, x45)=true ⇒ F(true, x6, x7, s(x8))≥F(gt(x6, plus(x7, s(x8))), x6, s(x7), s(x8)))
(20) (true=true∧plus(x7, x8)=0 ⇒ F(true, s(x47), x7, s(x8))≥F(gt(s(x47), plus(x7, s(x8))), s(x47), s(x7), s(x8)))
(21) (gt(x48, x49)=true∧plus(x7, x8)=s(x49)∧(∀x50,x51:gt(x48, x49)=true∧plus(x50, x51)=x49 ⇒ F(true, x48, x50, s(x51))≥F(gt(x48, plus(x50, s(x51))), x48, s(x50), s(x51))) ⇒ F(true, s(x48), x7, s(x8))≥F(gt(s(x48), plus(x7, s(x8))), s(x48), s(x7), s(x8)))
(22) (plus(x7, x8)=0 ⇒ F(true, s(x47), x7, s(x8))≥F(gt(s(x47), plus(x7, s(x8))), s(x47), s(x7), s(x8)))
(23) (x55=s(x49)∧gt(x48, x49)=true∧(∀x50,x51:gt(x48, x49)=true∧plus(x50, x51)=x49 ⇒ F(true, x48, x50, s(x51))≥F(gt(x48, plus(x50, s(x51))), x48, s(x50), s(x51))) ⇒ F(true, s(x48), x55, s(0))≥F(gt(s(x48), plus(x55, s(0))), s(x48), s(x55), s(0)))
(24) (s(plus(x56, x57))=s(x49)∧gt(x48, x49)=true∧(∀x50,x51:gt(x48, x49)=true∧plus(x50, x51)=x49 ⇒ F(true, x48, x50, s(x51))≥F(gt(x48, plus(x50, s(x51))), x48, s(x50), s(x51)))∧(∀x58,x59,x60,x61:plus(x56, x57)=s(x58)∧gt(x59, x58)=true∧(∀x60,x61:gt(x59, x58)=true∧plus(x60, x61)=x58 ⇒ F(true, x59, x60, s(x61))≥F(gt(x59, plus(x60, s(x61))), x59, s(x60), s(x61))) ⇒ F(true, s(x59), x56, s(x57))≥F(gt(s(x59), plus(x56, s(x57))), s(x59), s(x56), s(x57))) ⇒ F(true, s(x48), x56, s(s(x57)))≥F(gt(s(x48), plus(x56, s(s(x57)))), s(x48), s(x56), s(s(x57))))
(25) (x52=0 ⇒ F(true, s(x47), x52, s(0))≥F(gt(s(x47), plus(x52, s(0))), s(x47), s(x52), s(0)))
(26) (F(true, s(x47), 0, s(0))≥F(gt(s(x47), plus(0, s(0))), s(x47), s(0), s(0)))
(27) (gt(x48, x49)=true ⇒ F(true, s(x48), s(x49), s(0))≥F(gt(s(x48), plus(s(x49), s(0))), s(x48), s(s(x49)), s(0)))
(28) (plus(x56, x57)=x49∧gt(x48, x49)=true∧(∀x50,x51:gt(x48, x49)=true∧plus(x50, x51)=x49 ⇒ F(true, x48, x50, s(x51))≥F(gt(x48, plus(x50, s(x51))), x48, s(x50), s(x51)))∧(∀x58,x59,x60,x61:plus(x56, x57)=s(x58)∧gt(x59, x58)=true∧(∀x60,x61:gt(x59, x58)=true∧plus(x60, x61)=x58 ⇒ F(true, x59, x60, s(x61))≥F(gt(x59, plus(x60, s(x61))), x59, s(x60), s(x61))) ⇒ F(true, s(x59), x56, s(x57))≥F(gt(s(x59), plus(x56, s(x57))), s(x59), s(x56), s(x57))) ⇒ F(true, s(x48), x56, s(s(x57)))≥F(gt(s(x48), plus(x56, s(s(x57)))), s(x48), s(x56), s(s(x57))))
(29) (true=true ⇒ F(true, s(s(x63)), s(0), s(0))≥F(gt(s(s(x63)), plus(s(0), s(0))), s(s(x63)), s(s(0)), s(0)))
(30) (gt(x64, x65)=true∧(gt(x64, x65)=true ⇒ F(true, s(x64), s(x65), s(0))≥F(gt(s(x64), plus(s(x65), s(0))), s(x64), s(s(x65)), s(0))) ⇒ F(true, s(s(x64)), s(s(x65)), s(0))≥F(gt(s(s(x64)), plus(s(s(x65)), s(0))), s(s(x64)), s(s(s(x65))), s(0)))
(31) (F(true, s(s(x63)), s(0), s(0))≥F(gt(s(s(x63)), plus(s(0), s(0))), s(s(x63)), s(s(0)), s(0)))
(32) (F(true, s(x64), s(x65), s(0))≥F(gt(s(x64), plus(s(x65), s(0))), s(x64), s(s(x65)), s(0)) ⇒ F(true, s(s(x64)), s(s(x65)), s(0))≥F(gt(s(s(x64)), plus(s(s(x65)), s(0))), s(s(x64)), s(s(s(x65))), s(0)))
(33) (F(true, x48, x56, s(x57))≥F(gt(x48, plus(x56, s(x57))), x48, s(x56), s(x57))∧(∀x58,x59,x60,x61:plus(x56, x57)=s(x58)∧gt(x59, x58)=true∧(∀x60,x61:gt(x59, x58)=true∧plus(x60, x61)=x58 ⇒ F(true, x59, x60, s(x61))≥F(gt(x59, plus(x60, s(x61))), x59, s(x60), s(x61))) ⇒ F(true, s(x59), x56, s(x57))≥F(gt(s(x59), plus(x56, s(x57))), s(x59), s(x56), s(x57))) ⇒ F(true, s(x48), x56, s(s(x57)))≥F(gt(s(x48), plus(x56, s(s(x57)))), s(x48), s(x56), s(s(x57))))
(34) (F(true, x48, x56, s(x57))≥F(gt(x48, plus(x56, s(x57))), x48, s(x56), s(x57)) ⇒ F(true, s(x48), x56, s(s(x57)))≥F(gt(s(x48), plus(x56, s(s(x57)))), s(x48), s(x56), s(s(x57))))
(35) (F(gt(x12, plus(x13, x14)), x12, s(x13), x14)=F(true, x15, x16, x17) ⇒ F(true, x15, x16, x17)≥F(gt(x15, plus(x16, x17)), x15, x16, s(x17)))
(36) (plus(x13, x14)=x66∧gt(x12, x66)=true ⇒ F(true, x12, s(x13), x14)≥F(gt(x12, plus(s(x13), x14)), x12, s(x13), s(x14)))
(37) (true=true∧plus(x13, x14)=0 ⇒ F(true, s(x68), s(x13), x14)≥F(gt(s(x68), plus(s(x13), x14)), s(x68), s(x13), s(x14)))
(38) (gt(x69, x70)=true∧plus(x13, x14)=s(x70)∧(∀x71,x72:gt(x69, x70)=true∧plus(x71, x72)=x70 ⇒ F(true, x69, s(x71), x72)≥F(gt(x69, plus(s(x71), x72)), x69, s(x71), s(x72))) ⇒ F(true, s(x69), s(x13), x14)≥F(gt(s(x69), plus(s(x13), x14)), s(x69), s(x13), s(x14)))
(39) (plus(x13, x14)=0 ⇒ F(true, s(x68), s(x13), x14)≥F(gt(s(x68), plus(s(x13), x14)), s(x68), s(x13), s(x14)))
(40) (x76=s(x70)∧gt(x69, x70)=true∧(∀x71,x72:gt(x69, x70)=true∧plus(x71, x72)=x70 ⇒ F(true, x69, s(x71), x72)≥F(gt(x69, plus(s(x71), x72)), x69, s(x71), s(x72))) ⇒ F(true, s(x69), s(x76), 0)≥F(gt(s(x69), plus(s(x76), 0)), s(x69), s(x76), s(0)))
(41) (s(plus(x77, x78))=s(x70)∧gt(x69, x70)=true∧(∀x71,x72:gt(x69, x70)=true∧plus(x71, x72)=x70 ⇒ F(true, x69, s(x71), x72)≥F(gt(x69, plus(s(x71), x72)), x69, s(x71), s(x72)))∧(∀x79,x80,x81,x82:plus(x77, x78)=s(x79)∧gt(x80, x79)=true∧(∀x81,x82:gt(x80, x79)=true∧plus(x81, x82)=x79 ⇒ F(true, x80, s(x81), x82)≥F(gt(x80, plus(s(x81), x82)), x80, s(x81), s(x82))) ⇒ F(true, s(x80), s(x77), x78)≥F(gt(s(x80), plus(s(x77), x78)), s(x80), s(x77), s(x78))) ⇒ F(true, s(x69), s(x77), s(x78))≥F(gt(s(x69), plus(s(x77), s(x78))), s(x69), s(x77), s(s(x78))))
(42) (x73=0 ⇒ F(true, s(x68), s(x73), 0)≥F(gt(s(x68), plus(s(x73), 0)), s(x68), s(x73), s(0)))
(43) (F(true, s(x68), s(0), 0)≥F(gt(s(x68), plus(s(0), 0)), s(x68), s(0), s(0)))
(44) (gt(x69, x70)=true ⇒ F(true, s(x69), s(s(x70)), 0)≥F(gt(s(x69), plus(s(s(x70)), 0)), s(x69), s(s(x70)), s(0)))
(45) (plus(x77, x78)=x70∧gt(x69, x70)=true∧(∀x71,x72:gt(x69, x70)=true∧plus(x71, x72)=x70 ⇒ F(true, x69, s(x71), x72)≥F(gt(x69, plus(s(x71), x72)), x69, s(x71), s(x72)))∧(∀x79,x80,x81,x82:plus(x77, x78)=s(x79)∧gt(x80, x79)=true∧(∀x81,x82:gt(x80, x79)=true∧plus(x81, x82)=x79 ⇒ F(true, x80, s(x81), x82)≥F(gt(x80, plus(s(x81), x82)), x80, s(x81), s(x82))) ⇒ F(true, s(x80), s(x77), x78)≥F(gt(s(x80), plus(s(x77), x78)), s(x80), s(x77), s(x78))) ⇒ F(true, s(x69), s(x77), s(x78))≥F(gt(s(x69), plus(s(x77), s(x78))), s(x69), s(x77), s(s(x78))))
(46) (true=true ⇒ F(true, s(s(x84)), s(s(0)), 0)≥F(gt(s(s(x84)), plus(s(s(0)), 0)), s(s(x84)), s(s(0)), s(0)))
(47) (gt(x85, x86)=true∧(gt(x85, x86)=true ⇒ F(true, s(x85), s(s(x86)), 0)≥F(gt(s(x85), plus(s(s(x86)), 0)), s(x85), s(s(x86)), s(0))) ⇒ F(true, s(s(x85)), s(s(s(x86))), 0)≥F(gt(s(s(x85)), plus(s(s(s(x86))), 0)), s(s(x85)), s(s(s(x86))), s(0)))
(48) (F(true, s(s(x84)), s(s(0)), 0)≥F(gt(s(s(x84)), plus(s(s(0)), 0)), s(s(x84)), s(s(0)), s(0)))
(49) (F(true, s(x85), s(s(x86)), 0)≥F(gt(s(x85), plus(s(s(x86)), 0)), s(x85), s(s(x86)), s(0)) ⇒ F(true, s(s(x85)), s(s(s(x86))), 0)≥F(gt(s(s(x85)), plus(s(s(s(x86))), 0)), s(s(x85)), s(s(s(x86))), s(0)))
(50) (F(true, x69, s(x77), x78)≥F(gt(x69, plus(s(x77), x78)), x69, s(x77), s(x78))∧(∀x79,x80,x81,x82:plus(x77, x78)=s(x79)∧gt(x80, x79)=true∧(∀x81,x82:gt(x80, x79)=true∧plus(x81, x82)=x79 ⇒ F(true, x80, s(x81), x82)≥F(gt(x80, plus(s(x81), x82)), x80, s(x81), s(x82))) ⇒ F(true, s(x80), s(x77), x78)≥F(gt(s(x80), plus(s(x77), x78)), s(x80), s(x77), s(x78))) ⇒ F(true, s(x69), s(x77), s(x78))≥F(gt(s(x69), plus(s(x77), s(x78))), s(x69), s(x77), s(s(x78))))
(51) (F(true, x69, s(x77), x78)≥F(gt(x69, plus(s(x77), x78)), x69, s(x77), s(x78)) ⇒ F(true, s(x69), s(x77), s(x78))≥F(gt(s(x69), plus(s(x77), s(x78))), s(x69), s(x77), s(s(x78))))
(52) (F(gt(x18, plus(x19, x20)), x18, x19, s(x20))=F(true, x21, x22, x23) ⇒ F(true, x21, x22, x23)≥F(gt(x21, plus(x22, x23)), x21, x22, s(x23)))
(53) (plus(x19, x20)=x87∧gt(x18, x87)=true ⇒ F(true, x18, x19, s(x20))≥F(gt(x18, plus(x19, s(x20))), x18, x19, s(s(x20))))
(54) (true=true∧plus(x19, x20)=0 ⇒ F(true, s(x89), x19, s(x20))≥F(gt(s(x89), plus(x19, s(x20))), s(x89), x19, s(s(x20))))
(55) (gt(x90, x91)=true∧plus(x19, x20)=s(x91)∧(∀x92,x93:gt(x90, x91)=true∧plus(x92, x93)=x91 ⇒ F(true, x90, x92, s(x93))≥F(gt(x90, plus(x92, s(x93))), x90, x92, s(s(x93)))) ⇒ F(true, s(x90), x19, s(x20))≥F(gt(s(x90), plus(x19, s(x20))), s(x90), x19, s(s(x20))))
(56) (plus(x19, x20)=0 ⇒ F(true, s(x89), x19, s(x20))≥F(gt(s(x89), plus(x19, s(x20))), s(x89), x19, s(s(x20))))
(57) (x97=s(x91)∧gt(x90, x91)=true∧(∀x92,x93:gt(x90, x91)=true∧plus(x92, x93)=x91 ⇒ F(true, x90, x92, s(x93))≥F(gt(x90, plus(x92, s(x93))), x90, x92, s(s(x93)))) ⇒ F(true, s(x90), x97, s(0))≥F(gt(s(x90), plus(x97, s(0))), s(x90), x97, s(s(0))))
(58) (s(plus(x98, x99))=s(x91)∧gt(x90, x91)=true∧(∀x92,x93:gt(x90, x91)=true∧plus(x92, x93)=x91 ⇒ F(true, x90, x92, s(x93))≥F(gt(x90, plus(x92, s(x93))), x90, x92, s(s(x93))))∧(∀x100,x101,x102,x103:plus(x98, x99)=s(x100)∧gt(x101, x100)=true∧(∀x102,x103:gt(x101, x100)=true∧plus(x102, x103)=x100 ⇒ F(true, x101, x102, s(x103))≥F(gt(x101, plus(x102, s(x103))), x101, x102, s(s(x103)))) ⇒ F(true, s(x101), x98, s(x99))≥F(gt(s(x101), plus(x98, s(x99))), s(x101), x98, s(s(x99)))) ⇒ F(true, s(x90), x98, s(s(x99)))≥F(gt(s(x90), plus(x98, s(s(x99)))), s(x90), x98, s(s(s(x99)))))
(59) (x94=0 ⇒ F(true, s(x89), x94, s(0))≥F(gt(s(x89), plus(x94, s(0))), s(x89), x94, s(s(0))))
(60) (F(true, s(x89), 0, s(0))≥F(gt(s(x89), plus(0, s(0))), s(x89), 0, s(s(0))))
(61) (gt(x90, x91)=true ⇒ F(true, s(x90), s(x91), s(0))≥F(gt(s(x90), plus(s(x91), s(0))), s(x90), s(x91), s(s(0))))
(62) (plus(x98, x99)=x91∧gt(x90, x91)=true∧(∀x92,x93:gt(x90, x91)=true∧plus(x92, x93)=x91 ⇒ F(true, x90, x92, s(x93))≥F(gt(x90, plus(x92, s(x93))), x90, x92, s(s(x93))))∧(∀x100,x101,x102,x103:plus(x98, x99)=s(x100)∧gt(x101, x100)=true∧(∀x102,x103:gt(x101, x100)=true∧plus(x102, x103)=x100 ⇒ F(true, x101, x102, s(x103))≥F(gt(x101, plus(x102, s(x103))), x101, x102, s(s(x103)))) ⇒ F(true, s(x101), x98, s(x99))≥F(gt(s(x101), plus(x98, s(x99))), s(x101), x98, s(s(x99)))) ⇒ F(true, s(x90), x98, s(s(x99)))≥F(gt(s(x90), plus(x98, s(s(x99)))), s(x90), x98, s(s(s(x99)))))
(63) (true=true ⇒ F(true, s(s(x105)), s(0), s(0))≥F(gt(s(s(x105)), plus(s(0), s(0))), s(s(x105)), s(0), s(s(0))))
(64) (gt(x106, x107)=true∧(gt(x106, x107)=true ⇒ F(true, s(x106), s(x107), s(0))≥F(gt(s(x106), plus(s(x107), s(0))), s(x106), s(x107), s(s(0)))) ⇒ F(true, s(s(x106)), s(s(x107)), s(0))≥F(gt(s(s(x106)), plus(s(s(x107)), s(0))), s(s(x106)), s(s(x107)), s(s(0))))
(65) (F(true, s(s(x105)), s(0), s(0))≥F(gt(s(s(x105)), plus(s(0), s(0))), s(s(x105)), s(0), s(s(0))))
(66) (F(true, s(x106), s(x107), s(0))≥F(gt(s(x106), plus(s(x107), s(0))), s(x106), s(x107), s(s(0))) ⇒ F(true, s(s(x106)), s(s(x107)), s(0))≥F(gt(s(s(x106)), plus(s(s(x107)), s(0))), s(s(x106)), s(s(x107)), s(s(0))))
(67) (F(true, x90, x98, s(x99))≥F(gt(x90, plus(x98, s(x99))), x90, x98, s(s(x99)))∧(∀x100,x101,x102,x103:plus(x98, x99)=s(x100)∧gt(x101, x100)=true∧(∀x102,x103:gt(x101, x100)=true∧plus(x102, x103)=x100 ⇒ F(true, x101, x102, s(x103))≥F(gt(x101, plus(x102, s(x103))), x101, x102, s(s(x103)))) ⇒ F(true, s(x101), x98, s(x99))≥F(gt(s(x101), plus(x98, s(x99))), s(x101), x98, s(s(x99)))) ⇒ F(true, s(x90), x98, s(s(x99)))≥F(gt(s(x90), plus(x98, s(s(x99)))), s(x90), x98, s(s(s(x99)))))
(68) (F(true, x90, x98, s(x99))≥F(gt(x90, plus(x98, s(x99))), x90, x98, s(s(x99))) ⇒ F(true, s(x90), x98, s(s(x99)))≥F(gt(s(x90), plus(x98, s(s(x99)))), s(x90), x98, s(s(s(x99)))))
POL(0) = 0
POL(F(x1, x2, x3, x4)) = -1 - x1 + x2 - x3 - x4
POL(c) = -2
POL(false) = 1
POL(gt(x1, x2)) = 1
POL(plus(x1, x2)) = 0
POL(s(x1)) = 1 + x1
POL(true) = 1
The following pairs are in Pbound:
F(true, x, y, z) → F(gt(x, plus(y, z)), x, s(y), z)
F(true, x, y, z) → F(gt(x, plus(y, z)), x, y, s(z))
The following rules are usable:
F(true, x, y, z) → F(gt(x, plus(y, z)), x, s(y), z)
F(true, x, y, z) → F(gt(x, plus(y, z)), x, y, s(z))
false → gt(0, v)
gt(u, v) → gt(s(u), s(v))
true → gt(s(u), 0)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ NonInfProof
↳ QDP
↳ PisEmptyProof
plus(n, 0) → n
plus(n, s(m)) → s(plus(n, m))
gt(0, v) → false
gt(s(u), 0) → true
gt(s(u), s(v)) → gt(u, v)
plus(x0, 0)
plus(x0, s(x1))
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))